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Fig. 1.

Fig. 2. Large reflection termination (upper) and low
reflection termination (lower) used in tuning the
reflectometer, Teflon spacers are indicated by
arrows.

s

Fig. 3. “Sweep drive” unit (upper right) and c;arriage
(lower left) used to drive the load with reciprocat-
ing longitudinal motion inside the waveguide.

Fig. 4. Reflectometer output vs. position of the slid-

ing short termination. Vertical sensitivity is
0.006 dB /unit and total horizontal displacement is
in the neighborhood of A/2 at 9.8 GHaz.

The “sweep drive” has adjustments to
control the center of the sweep, sweep speed
(0.5-5 Hz), and sweep arc (30-300°). In ad-
dition, it provides the oscilloscope with a
horizontal deflection voltage that is propor-
tional to the angle (longitudinal position of
load).

The output signal from the detection sys-
tem should be filtered first and then applied
to a “high gain dc differential pre-amplifier.”
It is especially convenient if this amplifier is
a plug-in unit on the oscilloscope. A low-pass
RC filter is used to restrict the ac variation
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Block diagram of the reflectometer system using the semi-automatic technique.

of the detection system output to very low
frequencies. The commercially available
“high gain dc differential pre-amplifier”
should have provision for use of either input,
separately, or both together differentially,
either ac- or dc-coupled.

The output response is centered on the
oscilloscope by means of adjusting the vari-
able dc reference voltage when the pre-
amplifier is in the differential dc-coupled
mode of operation.

Brier DESCRIPTION OF TUNING PROCEDURE
Preliminary Adjustment of Sweep Drive Unit

1) The driver unit is adjusted such that
the reciprocating motion of the load scans a
distance of more than one-half guide wave-
length. This will assure that more than one
cycle of ac variation will be displayed on the
oscilloscope.

2) The frequency of the driver unit is
adjusted to a sweep rate of about 1 Hz
(cycle per second). One uses a slow sweep
rate to avoid mechanical vibration, but it
must be fast enough to avoid flicker of the
scope trace.

Adjustments of the Tuners

1) Tuner x and the variable dc reference
voltage are adjusted to decrease the dc level
of the signal (as viewed on the scope) when
a low reflection load is used and the pre-
amplifier is in the differential dc-coupled
mode of operation. This will assure that the
directivity ratio of the reflectometer is
increasing [2].

2) With the pre-amplifier switched to its
ac mode and its sensitivity increased, tuner
x is adjusted again to minimize the ac vari-
ation as viewed on the scope. Minimum
variation indicates maximum directivity
ratio.

3) Tuner y is adjusted next to reduce the
ac variation after the low reflection load is
replaced by a short.

Figure 4 shows the reflectometer output
vs. position of the sliding short circuit after
the system has been tuned at 9.8 GHz using
this technique. The slope is an indication of
the attenuation of the standard waveguide.

The average time taken for the tuning
process is about ten minutes compared to a
typical time of thirty minutes or more using
the manual technique. In addition, this tech-
nique does not demand as much skill and
knowledge of the system from the operator
as the manual technique does.
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A Note on Wave Propagation in
Periodic Media

The solution of problems involving wave
propagation in longitudinally stratified
media leads to two different equations which
must be solved in order to ascertain the
longitudinal dependence of the field quanti-
ties [1]-[3]. These are, for the TE and TM
modes respectively,

2
: [Z:h) + [wPuoe(s) — v2]UW =0 (1)
A A 1 de dU®@
d ¢ dz ds
+ [wPuoe(z) — v2]U@ =0 (2)

in which « denotes the frequency, ue the
(constant) permeability and e the permit-
tivity of the medium, and +? the sum of the
squares of the transverse separation con-
stants, U is a function describing the longi-
tudinal dependence of a field component or
of a scalar potential function from which the
field quantities may be derived, and z de-
notes the longitudinal coordinate.

1t will be shown that when e is a continu-
ous even-periodic function of z with period p
the solutions to (1) and (2) may be expressed
in terms of solutions to Hill’s equation [4],
the method of solution of which is tedious
but straightforward.

One makes the substitutions

kg4
?
UG = fO)
in (1) yielding
a2
det
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If the function

20 = (L) e ©

is expansible in an absolutely convergent
Fourier cosine series [5]

AE) = o™ + 2 Z 8, cos 2n¢  (7)
(5) becomes
dzf(h)
dg?

+ (0o(h> +2 3009 cos an“) M =0 @8

n=1

which is the canonical form of Hill's equa-
tion. The computation of stability charts for
Hill's equation, and, thus, the determination
of the pass band and stop band structure of
the dispersion characteristics, follows from
thecharacteristic equation for Hill's equation

B
sin? féé = A®W(0) sinZT—\/zg~ 9)

where 8 denotes the propagation factor in
the Floquet solution to Hill’s equation and
A®(0) is an infinite determinant whose
elements are

AB(0) I = 1 (10)

oy —

™ =

(m #n)., (11)

This procedure has been described in {1} and
{3]. The solution to Hill's equation may be
obtained, when g is known, by means of a
procedure outlined in [5] and [6]

In the case of TM wave propagation, one
introduces into (2) the substitutions

w2

F=— (12)
b
U@ (z) = el2fe)(g) (13)
vielding the differential equation for f¢(¢),

@ n 1 d% 3 (de)z
ag? 2e di? 4€ \d¢

+ (L) e =9 | 50 = 0.

If € is an even-periodic function, so also is
the function in square brackets and, thus,
one may write

[ 1=60@+2 3 6. cos2n¢  (15)

n=l
if the series is absolutely convergent. Hence,
a2®
dg?

4 [00(” 42 Z 0,.( cos 2nt | f@ =0 (16)

which is again the canonical form of Hill's
equation.

Thus, the z dependence of both TE and
TM waves in periodic media is expressible
in terms of Hill functions. The pass band
and stop band characteristics or w-8 dia-
grams may be determined from the charac-
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teristic equation by numerical or graphical

methods and the functional dependence of

the fields from the solutions to the Hill equa-
tion.
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Note on the Measurement of
Material Properties by the Strip-
Line Cavity

It has been found that when making
measurements of the properties of materials
with a strip-line cavity [1]-{3], results are
obtained which are consistently lower than
expected. The error is the more serious, the
higher the value of the dielectric constant or
permeability, as the case may be, of the
sample.

In the case of measurements of magnetic
properties, the reason for the effect has been
explained elsewhere [4]. The discrepancy is
attributable to demagnetizing factors in the
specimen, and when this is in the form of a
flat slab, placed either vertically against the
end wall of the cavity or horizontally on the
strip, the true relative permeability of an
isotropic specimen [ is given by

o st - )

’ 1 —uN
where u is the apparent permeability given
by the perturbation formulae of [1]and [3],
and N is the demagnetizing factor of the
specimen appropriate to the direction of the
microwave magnetic field (in MKS units).
1t is apparent from this formula that the dif-
ference between p and & increases with in-
creasing u and J, being zero for p=g=1.
For large values of I, » approaches the limit-
ing value 1/N.

In the case of measurements of the di-
electric constant, the discrepancy is attribut-
able to the presence of minute air gaps be-
tween the specimen and the strip and ground
plane. The perturbation formula of [1] and
[3] gives a value for the dielectric constant e
which would be correct if the sample fitted
flush with the strip and ground plane. If
there is an appreciable gap, the value of ¢
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calculated from the perturbation formula is
an apparent one. The relation between ¢ and
the true dielectric constant € can be calcu-
lated by means of the concept of a dielectric
circuit analogous to the well-known rmag-
netic circuit. The result is

. e(l — x/h)
1 — ex/h

[

@

where x is the total gap height, i.e., the sum
of the gaps at top and bottom of the sarple,
and % is the distance from the strip to the
ground plane, i.e., the distance —¢ in the
notation of [1]~[3]. It is apparent from this
formula that the difference between ¢ and &
increases with increasing e and €, being zero
for e=€=1. For large values of € e ap-
proaches the limiting value &/x.
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On Mode Losses in Confocal
Resonator and Transmission
Systems

In a recent correspondence Lonngren and
Beyer [1] calculated the losses for a single
iteration in a “beam waveguide” [2] with
circular lenses separated by twice their focal
length. Since the confocal Fabry-Perot
resonator with two identical circular mir-
rors may be studied by superimposing
two guided wave beams propagating oppo-
sitely in the given system, the beam-wave-
guide losses allow one to determine the
resonator Q. The problem which Lonngren
and Beyer [1] have solved approximately is
to find the eigenvalues ya.(c) of the integral
equation

'Yam(C)Sq,n(C, x)
= folcfa(cxy)sm(c, Wydy (1)

for small ¢. In an earlier work Beyer and
Scheibe [3] obtained values of vq..(c) for
large ¢. The purpose of this correspondence
is to point out that the same information has
been obtained by directly studying the solu-
tions of (1).
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